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Abstract 

The conventional estimate of aggregate productivity growth of a nation, the total factor 

productivity, or TFP, can be upwardly biased if environmental externalities generated during the 

production processes are not accounted for. In turn, this suggests that increased TFP growth may 

not necessarily indicate an environmentally sustainable economic growth in the long-run. In this 

paper, we estimate Green TFP growth, which is the TFP growth after accounting for the CO2 

emissions using data for more than 140 countries across the globe between 1990 and 2019. The 

Global Malmquist-Luenberger Productivity Index suggests that the Green TFP growth and the 

conventional TFP growth rates diverge significantly. India’s average annual Green TFP growth 

since 2000 is estimated to be almost zero per cent, while India’s conventional TFP growth stands 

out to be one of the highest globally, at above 2 percent annually. Our findings suggest that mostly 

the OECD countries may have maintained substantial progress in terms of green TFP, while the 

emerging Asian economies, including South Asian countries, may be significantly lagging. Despite 

this, our study suggests that India has improved its green productivity in recent years. Our study 

highlights the importance of decarbonizing the economic growth process of the emerging 

economies, including India at a much faster rate to achieve a more sustainable growth in the long-

run. 

 

Keywords: Green Total Factor Productivity; Directional Distance Function; Global Malmquist–

Luenberger Index. 
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I. Introduction 

The rate of technological progress and productivity growth have long been considered important 

drivers of an economy’s sustained growth in output and per-capita income (Solow 1956; Uzawa 

1965; Lucas 1988). The long-term viability of a nation's economic growth is achieved through 

innovations, diffusion of technologies, and growth in the productivity levels of its workforce 

(McGowan et. al., 2015). Recognizing its importance, the United Nations Department of Economic 

and Social Affairs included productivity growth among its 17 Sustainable Development Goals 

(SDGs). The SDGs seek to promote global prosperity by increasing economic productivity through 

innovation and technological advancement, as well as empowering vulnerable groups through the 

formalisation and growth of micro, small, and medium enterprises. The term "productivity" 

appears in SDG 2.3 and 2.4 (agriculture, in particular subsistence agriculture) and in SDG 8.2 

(factor productivity). In the broader context, although productivity growth accounts for the 

distributional aspects of growth, allocative efficiency of available resources, etc., aggregate 

productivity growth is generally achieved through the advancement and diffusion of technological 

capabilities within a nation (see McGowan et. al., 2015). The economic policies across the world 

during the post-World War II era largely focused on the growth rate of per-capita Gross Domestic 

Product (GDP) through industrialization and technological progress. On the contrary, the 

environmental implication of this process through the emission of Green House Gases (GHG), 

deforestation, disposal of harmful chemicals into the soil and water, etc. has come into focus 

relatively recently. Environmental degradation has long been recognised as having a negative 

impact on public health, human capital, and thus productivity growth (Jha and Tripathi 2011; 

Deryugina and Hsiang 2014; and Kumar and Gautam 2014). Therefore, the environmental 

consequences of a nation’s industrialization and productivity growth can potentially limit its ability 

to utilise its own human and natural resources in the future. In light of this, a wide range of 

literature provides consensus in accounting for this negative externality on the environment when 

measuring a country's productivity growth (see Brandt et al. 2014). 

Productivity growth has been measured in several ways in the literature. From the welfare point of 

view, the commonly used measure is average labour productivity, which measures GDP per capita 

or the output per worker of a nation. However, labour productivity growth comes with limitations 

when it comes to measuring technological progress and productivity growth. A significant portion 
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of growth in per-worker output comes from growth in fixed capital stocks, including transport 

equipment, buildings, etc., which may not necessarily reflect an economy’s productivity growth 

or technological progress. Due to this limitation, total factor productivity (TFP) has gradually taken 

precedence as a measure of technological progress and productivity growth, following the seminal 

work of Solow (1956). TFP growth refers to the growth of a country’s output, commonly measured 

by its GDP, after the contributions of both labour and capital are subtracted. Thus, TFP growth 

accounts for that part of the growth in a country’s GDP that is not explained by the growth in its 

labour force and stock of physical capital. The TFP growth rate, therefore, provides a measure of 

technological progress and efficiencies in the production processes, collectively called the 

productivity growth in an economy. 

In this paper, we estimate the TFP growth rate for a set of 146 countries after accounting for the 

possible environmental consequences. We used internationally comparable data on aggregate 

production sets from Penn World Table 10.0 between 1990 and 2019. The effect of economic 

growth on the environment can potentially encompass several aspects, including deforestation, 

land and water pollution through the disposal of chemicals, the depletion of groundwater, and the 

emission of Green House Gases (GHG). In this paper, however, we account only for the emission 

of carbon dioxide (CO2) in deriving our climate-adjusted TFP growth, partly due to the non-

availability of reliable and comparable data across countries on other aspects of environmental 

degradation. We call this measure the "green TFP growth" in the remaining part of the paper. In 

the absence of any direct measure of aggregate externality caused by the emission of CO2, we 

assume that this externality is proportional to the volume of the emission. Our methodology 

broadly follows Oh (2010). This methodology takes all the possible combinations of production 

set and emission levels at the aggregate country level and comes to an efficient frontier in the form 

of the Global Malmquist-Luenberger Productivity Index (GMLPI). The green TFP in a country is 

measured by the "distance" of that country’s position from the global frontier. 

Several studies in the past, including those by Jeon and Sickles (2004), Kumar (2006), and Oh 

(2010), estimated green TFP growth by considering a large set of countries, including India. 

However, these studies mainly focused on the decades prior to 2010. A slew of initiatives has 

followed since then at the international level in the last decade, following several international 

protocols and accords, e.g., the Copenhagen Protocol, the Paris Agreement, etc. There has been no 
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significant empirical evidence available at the international level concerning the growth of green 

TFPs for the last decade. Our study intends to fill the gap. 

Our paper is organised as follows: Section II is a brief review of the literature. Section III is a 

summary of the stylized facts. Section IV describes the data and methodology used. Section V 

discusses our findings. We discuss India’s key policies towards climate risks in Section VI, while 

Section VII concludes the paper. 

II. Review of Literature 

The available literature suggests that stricter environmental laws on account of rising pollution 

levels adversely impact productivity growth as higher pollution abatement expenditure results in 

the diversion of resources away from production activities (Eberts and Forgarty (1987), Jaffe et al. 

(1995), Garofalo and Malhotra (1995), Murty et al. (2006)). Subsequently, a slew of strategies 

were introduced for modelling environmental externalities in productivity estimates and crediting 

firms for reducing emissions. The Malmquist-Luenberger Productivity Index (MLPI), empirically 

estimated as the Global MLPI (Pastor and Lovell 2007; Oh 2010; Zhu et al 2018) Metafrontier 

MLPI (Oh and Lee 2010); slack-based metrics; and data envelopment analyses (DEA) are among 

these techniques. These methodologies made it possible to include environmental externalities in 

the productivity analysis. 

 The Malmquist-Luenberger productivity index, established by Chung et al. (1997) to compute the 

green productivity index for the Swedish paper and pulp industry, has become the most widely 

used methodology in the literature. Weber and Domazlicky (2001), Fare et al. (2001), etc. used 

this approach to estimate green productivity growth in the US. Jeon and Sickles (2004) estimate 

green productivity using the MLPI for a sample of Asian countries (1980–95) and OECD 

economies (1980–90). Yue et al. (2006) use aircraft noise to evaluate the productivity of Taiwan's 

airport industry from 1995 to 1999. Kumar (2006) estimates environmentally sensitive 

productivity indices for 41 developed and developing countries during 1971–1992. According to 

these studies, not accounting for unwanted outputs in the analysis of efficient production frontiers 

can lead to an upward bias in the estimates of productivity growth. Most of these studies also find 

a divergence between TFP and green TFP in recent decades. They also conclude that a productivity 
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index that incorporates an increase in desired production and a decrease in undesirable output leads 

to an increase in the aggregate productivity of a country. 

 Apart from these studies, there are numerous others that estimate green productivity in China (Li 

and Tao 2011; Li et al. 2013; Zhang and Choi 2013; Li and Lin 2016). For example, Chen et al. 

(2018) estimate TFP growth for China's industrial sectors and find that incorporating 

environmental consequences reduces the industrial TFP by 0.02 percent each year on average. 

Wang and Shen (2016) find a significant difference in green productivity between polluting and 

clean production industries, with the former having lower green productivity than the latter. 

Several studies have examined the adverse impact of the environment on labour and agricultural 

productivity in India (Datta and Jong 2002; Singh 2016; Kumar and Sharma 2014). 

 The available literature in this regard has broadly remained concentrated on sectoral estimates for 

China, the United States, and a select set of OECD and Asian economies and has projected green 

productivity trends through the early 2000s. There is no significant work after Jeon and Sickles 

(2004), Kumar (2006), and Oh (2010) that estimated green TFP growth in a large set of countries, 

including India, especially in the most recent decade, which witnessed a slew of measures by the 

international, and domestic organizations. Our research attempts to add to the existing literature 

and policy debates by providing estimates of green TFP growth across the globe for the most recent 

decades using an internationally comparable Penn World Table dataset. In our discussions, we 

draw special attention to India’s case and provide an international comparison. 

III. Stylized Facts 

India's per capita CO2 emissions have historically remained lower than the global average due to 

India’s low share in industrial output and overall GDP. Chart 1 suggests that India’s per capita 

CO2 emissions, at approximately 1.8 metric tons, were roughly 40 percent of the global average at 

the end of the last decade, despite increasing since 1990. In contrast, India's CO2 emission intensity 

in relation to GDP remained substantially higher than that of the major Asian economies and 

advanced economies (Chart 2). For instance, India’s average CO2 emission in relation to GDP 

between 2010 and 2019 was 305 metric tons (MT) per million US dollars, compared to 262 MT 

per million US dollars in the case of the OECD countries. India’s CO2 emission intensity in relation 

to GDP was substantially higher than that of other developing nations in South Asia, Latin 
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America, and Eastern Europe. Therefore, India's low per capita CO2 emissions may not necessarily 

signal the adoption of carbon-sensitive technologies. Indeed, India's low per capita emissions can 

be attributed to its large population. In fact, as the economy grows at a faster rate than the rest of 

the world, there could be a risk of higher incremental emissions in the near to medium term. 

 

Source: Author’s calculation from Penn World Table 10.0 and World Development Indicators, World Bank. 

The available data suggests that the TFP growth rate in India was higher than most of the major 

economies in recent decades (Chart 3). Since 2000, India's high TFP growth has helped to support 

the country's high aggregate GDP growth among emerging economies. Chart 3 suggests that 

India’s average TFP growth rates during 1990-2019 were not only the highest in the world, but 

that the TFP growth rate in India has increased over these decades, in contrast to the developed 

and most of the developing economies. This relatively higher rate of technological progress in 

India, as indicated by the TFP growth rates, in conjunction with the high carbon intensities of GDP 

suggested by Chart 2, suggests that the recent progress may have come at the cost of environmental 

sustainability. It is well established in the literature that environmental sustainability can lead to 

better economic growth in the long term. Therefore, in the present context, it may be pertinent to 

see how much TFP growth India has been able to achieve after we account for the possible 

environmental consequences of the present growth process. If we do not take into account the 

environmental damages that the economic growth of the country brings in, the available estimates 

of productivity growth can be upwardly biased. In this vein, we revisit the estimate of TFP growth 

after accounting for CO2 emissions in this paper.  
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Source: Author’s calculation from Penn World Table 10.0. 

IV. Methodology and Data 

A. Methodology 

We estimate green TFP growth (GTFPG) using the methodology of Oh (2010). In this paper, 

GTFPG is quantified using the Global Malmquist-Luenberger productivity index (GMLPI). This 

index is estimated on the basis of the directional distance function (DDF), which measures the 

"distance" of a country at a given point in time from a globally optimum production frontier. The 

global production frontier consists of the set of outputs maximised with the given sets of inputs. 

The output may consist of both "good" and "bad" output. A good output may be the outcome of 

any economic activity that is either welfare-enhancing or has positive externalities, such as the 

production of consumer goods, intermediate inputs, the delivery of services, works of art, etc. Bad 

output, on the other hand, is the result of any economic activity that reduces welfare. For instance, 

emissions of harmful gases, disposal of harmful chemicals into natural resources like waterbodies, 

etc., and noise pollution can be treated as bad outputs in these estimates. 

The index is defined for a production unit as the ratio of DDF between time t and t+1: 

𝐺𝑀𝐿𝑡,𝑡+1(𝑥𝑡, 𝑦𝑡, 𝑏𝑡, 𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) =  
1+𝐷𝐺(𝑥𝑡,𝑦𝑡,𝑏𝑡)

1+𝐷𝐺(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1)
                              (1) 

At time s= t and t+1,   𝑥𝑠 , 𝑦𝑠, 𝑎𝑛𝑑 𝑏𝑠 denotes the inputs, good output and bad output, respectively. 

DG(.) is the Directional Distance Function (DDF), which measures how far a country is from the 

production frontier, which represents the global benchmark technology for a given span of years 

(Fare and Grosskopf 2000). According to the DDF, a country that produces a given set of good 
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output from a given set of inputs while producing less bad output will be closer to the global 

technology frontier than a country that can produce the same amount of good output while 

producing more bad output. The numerator of this GMLPI takes the "distance" of a country from 

the global frontier as obtained by DDF at period t, while in the denominator, it uses the "distance" 

of the same country at period t+1. A value of GML greater than 1 indicates higher efficiency in 

period t+1 compared to period t in producing two outputs using the given set of inputs since the 

distance of that country’s own production frontier from the global frontier in time t+1 is smaller 

than its distance in time t. On the other hand, if the value of this index is less than 1, it indicates 

that the country’s efficiency has declined from the previous year. The measure of efficiency 

changes as obtained from the above GMLPI is regarded as the GTFPG, since other than the 

desirable output y, it also accounts for the production of the undesirable output, which is the 

emission of greenhouse gases during the country’s domestic production processes. A rise in 

undesirable output while keeping the good output and the set of inputs unchanged would reduce 

GMLPI. We now briefly describe the methodology for the construction of DDF as given in Fare 

and Grosskopf (2000). We briefly describe the methodology as in (Chung et al., 1997; Oh, 2010) 

below. 

In the presence of undesirable output, the production technology for a decision-making unit 

(DMU) producing both desirable and undesirable output from a given set of inputs is represented 

as follows: 

𝑃𝑡(𝑥) = {(𝑦𝑡, 𝑏𝑡) ∣ 𝑥𝑡𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦𝑡, 𝑏𝑡)}                                            (2) 

In equation (2), y is the vector of desirable output, b is the vector of undesirable output, and x is 

the set of inputs available to a particular DMU at a given time. The production technology set 

provides us with a frontier when a country is producing both desirable and undesirable outputs 

using the available set of inputs. A global benchmark technology is defined as 𝑃𝐺 = 𝑃1 ∪ 𝑃2 ⋯ ∪

𝑃𝑇 .  This global benchmark technology is an augmented version of Pastor and Lovell (2005), 

which incorporates undesirable outputs into production. 

Some assumptions are imposed on this production technology which are in line with the production 

theory. First, if inputs are increased, outputs will always increase. Second, desirable outputs cannot 

be produced if undesirable outputs are not produced. This implies that all production activity leads 
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to some form of emission, and if there is no emission, there cannot be any production. Third, any 

proportional decrease in desirable and undesirable output is feasible if the original combination of 

y and b is in the production technology set for given inputs. Intuitively, this implies that if 

undesirable output is reduced, then desirable output will also fall. This undesirable output 

reduction is costly and occurs by diverting resources away from the production of y. Lastly, if the 

output vector is feasible, then any output vector with less of the desirable output and the same 

amount of undesirable output is also feasible. This implies that desirable output is freely 

disposable.  

The efficiency of a particular DMU at a given point in time is measured as the distance of that 

DMU from the global technology frontier. This distance is obtained by a DDF. The DDF shows 

the efficient point of production for a firm along a predetermined direction. With non-zero bad 

output, such as pollution, the efficient direction is defined along the path where undesirable output 

decreases and desirable output increases. For example, let 𝑔 = (𝑔𝑦, 𝑔𝑏) be the directional vector2. 

The direction vector determines the direction in which the desirable output should increase and the 

undesirable output should decrease. Given the direction vector, the DDF is defined as follows: 

𝐷(𝑥, 𝑦, 𝑏; 𝑔𝑦, 𝑔𝑏) = max{𝛽|(𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑝(𝑥)}                            (3) 

The function seeks to simultaneously increase the desirable output and reduce the undesirable 

output. 𝛽 Is the DDF, it indicates the maximum output which can be produced with minimum 

emissions. 𝛽 is estimated using non-parametric optimization techniques such as linear 

programming. In our paper, we estimate 𝛽 using linear programming.  

 Figure 1 pictorially illustrates the DDF. In Figure 1, the solid line indicates the production frontier 

for a DMU that is producing both good and bad output. The DMU is operating at point F. The 

distance from the frontier, such as point C, where y is increased and b is decreased, is measured 

by the DDF, represented by B. The shorter the distance, the more efficient the DMU is. If B 

decreases over time, then the DMU is improving its green efficiency, whereas if B increases over 

time, then it means the DMU is deteriorating in its green efficiency. 

                                                           
2 Following Chung et al (1997) and Oh (2010), the direction vector used is g=(y,b) 
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         Y (desirable output) 

  

 

  

                     C  

 

                                                                                            b (undesirable output) 

Fig 1: Distance between the optimal frontier and the output vector, denoted by B, is the DDF. 

 

B. Data 

In this paper, GTFPG is estimated at the country level. Therefore, in this case, a country serves as 

a DMU. The implicit assumption underlying a "frontier" among a collection of DMUs is that these 

DMUs are comparable in terms of the usage and objectives of their technologies and that the "best" 

among them lies on the frontier. This is a hard assumption to make given that countries around the 

world vary widely in terms of their economic and scientific developments. For instance, some 

countries are more dependent on agriculture, while others may be more industrialized. The nature 

of technologies in an agrarian economy may not be strictly comparable to those in an industrialised 

country. Despite this heterogeneity, we assume that the population in every country strives to attain 

a similar standard of living over the long term by utilising the factors of production, namely labour 

and capital, at their disposal. In addition, globalisation has facilitated the expansion of international 

connections. This supports the utilisation of a global technology frontier. Earlier applications of 

the method include (Chung et al. 1997; Fare et al. 2001; Yu et al. 2008). 

We collect data on country-wise quantities of inputs, viz., labour and capital; quantities of 

"undesirable" or "bad" output, which is the emissions of CO2; and quantities of "desirable" or 

"good" output. The Penn World Database (version 10.0) is utilised for data on total population, 

number of employed persons, annual average hours worked by persons engaged in economic 

activities, indices of human capital based on years of schooling and returns, stock of existing 

B 

F(
F (b,y) 
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capital, and indices of capital services based on the internal rate of return to capital in each country. 

The total population and the number of employed persons were stated in millions, while the capital 

stocks were reported at 2017 constant national prices converted into USD million. Human capital 

and capital services indices were expressed as indexes using 2017 as the base year. Penn World 

Table has had this information for 183 countries since the early 1950s. From this dataset, we 

exclude 53 countries, which are basically small island nations and countries with a smaller 

population. We ranked the countries based on their population and eliminated the lowest 20 percent 

of nations based on population. Afghanistan, Iraq, Syria, and Libya are also omitted from our 

sample because they suffered large-scale conflict during this period. 

We use the World Development Indicators database provided by the World Bank for data on CO2 

emissions. In this database, per-capita emissions of CO2 measured in metric tonnes were available 

since 1990 for almost all the countries that were available in Penn World Table 10.0. As a result, 

we limit our sample to 1990–2019. The final dataset used in this paper is made up of the above 

information from 143 countries between 1990 and 2019. 

We found that the average annual hours worked, capital service, and human capital index were 

missing for some countries for some significant periods. In these cases, the missing values are 

estimated using the average value of these variables for the region to which these countries belong. 

In order to do this, we first divide our sample countries into the following nine geographical 

regions: OECD excluding Japan, South-East Asia, East-Asia including Japan, the Middle East, 

North Africa, and Central Asia (MENACA), Africa excluding North Africa, Eastern Europe, Latin 

America, and South Asia. The assumption is that the working behavior, e.g., the average hours of 

work, human capital, and returns to capital, would have been similar across countries that share 

common historical, topographical, and cultural features. Therefore, the average pattern of these 

variables in the countries in a region could be very similar. Using panel data from 153 countries 

between 1990 and 2019, we estimate the following regression models to find the time-varying 

average values of these variables for each region: 

𝐻𝑢𝑚𝑎𝑛 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐼𝑛𝑑𝑒𝑥𝑖𝑡 = ∑ 𝑅𝑒𝑔𝑖𝑜𝑛 𝐷𝑢𝑚𝑚𝑖𝑒𝑠 + ∑ 𝑌𝑒𝑎𝑟 𝐷𝑢𝑚𝑚𝑖𝑒𝑠 +∈𝑖𝑡                         (4) 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑖𝑡 = ∑ 𝑅𝑒𝑔𝑖𝑜𝑛 𝐷𝑢𝑚𝑚𝑖𝑒𝑠 + ∑ 𝑌𝑒𝑎𝑟 𝐷𝑢𝑚𝑚𝑖𝑒𝑠 +∈𝑖𝑡                                    (5) 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑𝑖𝑡 = ∑ 𝑅𝑒𝑔𝑖𝑜𝑛 𝐷𝑢𝑚𝑚𝑖𝑒𝑠 + ∑ 𝑌𝑒𝑎𝑟 𝐷𝑢𝑚𝑚𝑖𝑒𝑠 +∈𝑖𝑡                      (6) 

In these models, the estimated coefficients of the region dummies would capture the average value 

of the variables human capital index, capital services, and the average hours worked for the whole 

period. The estimated coefficients of the year dummies would provide estimates of by how much 

these estimates would differ on average in a particular year across all regions. The year dummies, 

therefore, would capture the year-specific global shocks, both positive and negative, to these 

variables.  The estimated values of human capital, capital service, and average hours worked from 

these regressions are used to replace the missing fields of these variables among the sample 

countries. A regression-based estimation of region-specific averages could be advantageous over 

a simple arithmetic mean for the specified regions for each year, as this regression would separate 

out the idiosyncratic components that are represented by the error terms of the regressions (∈𝑖𝑡). 

 

In any productivity estimation, we require information on output and input. In our analysis, we use 

effective labour and effective capital as inputs into production. This enables us to take into account 

the quality of labour and capital (Patnaik 2014; Idris and Rahma 2019; Knowles and Owen 1997). 

To get the actual labour supply in each country, we multiply the number of workers employed by 

the annual hours of labour supplied by them. And then, to account for labour quality, we multiply 

by the human capital index. 

The effective labor in our study is calculated as: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 ∗ 𝐻𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑 ∗ 𝐻𝑢𝑚𝑎𝑛 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐼𝑛𝑑𝑒𝑥                   (7) 

These inputs can produce both desirable and undesirable outputs. The desirable output is measured 

in terms of per capita GDP, while the undesirable output is measured in terms of per capita 

emissions. 

In a similar way, the effective capital is measured as: 

  𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∗ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑠𝑡𝑜𝑐𝑘.                                                                                       (8) 

After predicting the missing values, we compute the effective labour and capital using the above 

formulas. 

In addition to accounting for supply-side inputs into production, we also take absorptions into the 

GDP ratio of each country, where absorption is domestic consumption by end consumers 

(government, households, and firms). 
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Based on our data, we estimate the directional distance function of each nation, which indicates 

the distance of each nation from the global frontier. And from the DDF, we estimate the global 

Malmquist-Luenberger productivity index (GMLPI), which gives us the measure of green TFP. 

 

V. Results 

We discuss our estimated results in this section. Our estimates for India in Chart 4 suggest that the 

GTFP growth remained significantly lower than the TFP growth during the sample period, which 

is between 1990 and 2019. The TFP growth broadly sums up technological progress and aggregate 

productivity growth in any country, while the GTFP growth would additionally account for any 

adverse effect of that technological progress on the environment through the emission of green 

house gases. Given that almost no industrialization or economic progress can be carried out 

without some degree of environmental impact, it is logical to have lower GTFP growth than 

aggregate TFP growth. The gap between the two lines in Chat 4 basically represents that fact. This 

strand of literature is thus more interested in the relative gap between these two growth rates. The 

gap between these two, therefore, would represent the cost to the environment from economic 

growth (see Chart 1a in the Annex). 

 
Source: Author’s own calculations based on Penn World Table 10.0. 

Chart 5 shows the decadal average growth rate of GTFP from the 1990s to the 2010s. India’s green 

TFPG was negligible at almost 0.0 percent in the 1990s, after which it became negative during the 

2000s, when India witnessed phases of high economic growth. It suggests that the economic 
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growth during the 2000s may have been accompanied by the adoption of technologies that might 

have provided significant economic growth but were environmentally unsustainable. Notably, 

most of the environmental regulation, including the National Action Plan on Climate Change 

(NAPCC, 2008), was adopted in India and globally during the late 2000s. Therefore, the economic 

activities supporting the high growth phase during the 2000s had limited scope for being regulated 

from an environmental angle. India’s green TFP growth has improved marginally to 0.1 percent 

during the 2010s, possibly on account of strict implementations of regulatory policies like NAPCC, 

the Perform, Achieve, and Trade (PAT) scheme, successive stages of BS, etc. The adoption and 

implementation of these policies may have also been accelerated through the international 

commitments made under the Kyoto Protocol, the Montreal Protocol, the United Nations 

Framework Convention on Climate Change, the Paris Agreement, and COP26. These 

commitments have prompted governments to address the environmental consequences of 

economic expansion and, as a result, adjust their national policy framework to reduce Green House 

Gas emissions to adhere to climate-change commitments. It is worth noting that, despite having 

the highest TFP growth rate compared to the other regions in the 1990s, 2000s, and 2010s, except 

eastern Europe in the 2000s (Chart 3), India’s green TFP growth rate was very low as compared 

to most of the other regions. This suggests that technological adoption in India may have had a 

disproportionate impact on the environment over these decades. However, there have been 

improvements on these grounds in the most recent decade. 

 
Source: Author’s calculations based on Penn World Table 10.0 and World Bank. 

 

-3.0

-2.0

-1.0

0.0

1.0

2.0

India South Asia OECD Southeast

and East

Asia

Middle east,

Central Asia

and Africa

Eastern

Europe

Latin

America

P
er

 c
en

t

Chart 5: GTFPG

1990's 2000's 2010's



16 
 

Decadal GTFP Growth: International Perspective 

Southeast and East Asia, including China, Japan, and South Korea, have seen the most 

improvement in their GTFP growth, from -0.7 percent in the 1990s to 0.5 percent in the 2010s 

(Chart 5). Most of these countries except Japan experienced rapid industrialization and economic 

growth during the late 1980s and early 1990s. This is reflected in the high TFP growth rate (Chart 

3). But similar to India during the 2000s, when it experienced higher economic growth, the GTFP 

growth rate for the Southeast and East Asian countries during the 1990s was actually negative (-

0.7 percent) (Chart 5). The cases of India during the 2000s and the Southeast and East Asian 

countries during the 1990s suggest that the emerging economies in Asia could probably be facing 

some tradeoffs between high economic growth and environmental sustainability at large, as 

reflected in relatively high TFP growth but lower GTFP growth during their high growth phases. 

Eastern European countries witnessed the second highest GTFP growth during the 2010s. These 

countries, on the other hand, experienced significant negative GTFP growth in the 1990s and 

extremely high GTFP growth in the 2000s. Most of the countries in this region are the former 

Soviet countries, which broke up in the early 1990s. Several of these countries experienced wars 

and unrest (e.g., Yugoslavia), which is reflected in the negative TFP growth rate during the 1990s 

(Chart 3). In addition, the war and unrest may have resulted in increased emissions, as reflected in 

the much lower GTFP growth during the 1990s (Chart 5). When the war and unrest broadly settled 

in this region during the 2000s, the formation of capital through reconstruction of economic 

capabilities and the adoption of technologies on top of a very low base due to war and unrest in 

the prior decade may have resulted in very high growth in both TFP and GTFP growth in the 

2000s. The phenomena observed during the 2000s could, therefore, be best described as a "post-

war" phenomenon, when the capital stock and technical capacities depleted during the war are 

being rebuilt, resulting in high TFP growth. In a nutshell, the East European countries were away 

from their steady states during both the 1990s and 2000s, where the latter may have mostly 

witnessed a catch-up process fueled by extraordinary growth in GDP and TFP. The situation may 

have started to stabilise in the 2010s but may still have remained significantly behind their steady 

states, at least as compared to India and other Southeast and East Asian countries, most of which 

gained political independence and a relatively stable regime much before the Eastern European 



17 
 

countries. Therefore, large fluctuations in the estimates of GTFP growth in the Eastern European 

countries may be interpreted with caution. 

In this context, the OECD member countries excluding Japan, most of which are advanced 

economies at present and achieved high-growth phases a long time ago, possibly provide a case of 

"frontier" or relatively "steady-state" economies in the global context. Since the 1990s, these 

countries have seen a consistent improvement in GTFP growth. Also, in the last decade, these 

countries recorded the highest GTFP growth among all the regions considered here. We obtain 

these higher estimates of GTFP growth for OECD countries despite the fact that TFP growth 

during the last decade in these countries was lower than in South Asia and Eastern Europe (Chart 

3). This suggests that the recent productivity growth in the OECD countries may have occurred 

with significantly reduced environmental consequences. This may be attributed to the early 

adoption and improved implementation of environmental policies. For example, the European 

Union's carbon trading scheme (EU-ETS) was the world's first emission trading system, 

implemented by EU countries to tackle climate change. These countries were also more successful 

in implementing other market-based instruments such as carbon trading, effluent taxation, and 

other command and control instruments. Furthermore, under the umbrella of shared but distinct 

obligations, these countries have established increasingly ambitious international commitments 

through significant progress on the NDC. Finally, they have the necessary resources to transition 

to ecologically friendly technologies. 

Countries in the Middle East, Central Asia, and Africa collectively witnessed negative GTFP 

growth rates during our sample. During this period, these countries also witnessed negative TFP 

growth rates. However, as a result of global efforts to reduce emissions, GTFP growth in these 

countries has become less negative over time. For the Latin American countries, negative GTFP 

growth and negative TFP growth were observed during the 2010s. 

The discussion so far based on Charts 3 and 5 suggests that, although India has witnessed an 

impressive rate of technological progress and productivity growth since the Economic 

Liberalization of 1991, which by far remains the largest with respect to the rest of the world (Chart 

3), when we account for its adverse effects on the environment, the "net" technological growth, 

measured by the GTFP growth, remains among the lowest in the world (Chart 5). This suggests 
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that India’s technological progress may have been more carbon-dependent compared to the rest of 

the world, especially the east-Asian and OECD countries. Although it is well recognised that 

OECD countries are far ahead of India in terms of economic progress and technological abilities 

to turn their economic activities into more environmentally sensitive ones, critically examining 

India’s environment-related policies vis-à-vis the OECD countries may provide sufficient scope 

for improving India’s position in this respect. Chart 6 suggests that India’s GTFP growth remained 

within the 1 standard deviation band around the median GTFP growth rate across all the sample 

countries. In the long run, we also find a convergence in GTFP growth across countries. This could 

be due to the implementation of climate finance, which allows developing nations to access climate 

finance through the Green Climate Fund, the Adaptation Fund, and the Global Environment 

Facility. 

 
Source: Author’s calculations based on Penn World Table 10.0 and World Bank. 

Chart 7 suggests that, out of 146 countries in our sample, India ranked between 70th and 

80th for most of the 1990s and the years prior to the global financial crisis. It deteriorated between 

2006 and 2012 but improved afterwards to reach below 70 again towards the end of the 2010s. 
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Source: Author’s calculations based on Penn World Table 10.0 and World Bank. 

Despite these recent improvements, India’s rank in terms of GTFP growth remains behind all the 

major emerging and advanced economies. This suggests heavy carbon-dependence of the 

aggregate growth process in the Indian economy. In the long run, this would require a robust 

system of carbon-pricing to limit the carbon-demand in India. The estimates as at end of 2022 

available from the Carbon Pricing Dashboard, World Bank Group suggest that 70 carbon-pricing 

initiatives are implemented globally, covering 47 national jurisdictions. India, however, does not 

levy an explicit carbon price till date (OECD 2022). Fuel excise taxes, an implicit form of carbon 

pricing, cover 54.7 per cent of emissions in 2021, unchanged since 2018, while fossil fuel subsidies 

cover 2.5 per cent of emissions in 2021, unchanged since 2018 (OECD 2022). This underlines the 

need for stepping up an active and direct carbon-price mechanism in India. In this vein, we discuss 

some of the existing fiscal, monetary and macroprudential frameworks existing in India towards 

the nation’s goal for transition to a greener economy. 

VI. Policy Developments in India 

India started sensitising the issue of climate change and green finance as early as 2008. The 

National Action Plan on Climate Change (NAPCC) was formulated in 2008 with a vision to outline 

the broad policy framework for mitigating the impact of climate change. Subsequently, the Climate 

Change Finance Unit (CCFU) was formed in 2011 within the Ministry of Finance as a coordinating 

agency among the main actors responsible for green finance in India, viz., the Ministry of Finance, 

the Ministry of Environment, Climate Change, and Forests, the State Governments, the Reserve 

Bank of India, the Security and Exchange Board of India, and the Insurance Regulatory and 
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Development Authority of India. There are several policy measures in place to reduce the carbon 

dependence in the country, which can be broadly classified into two: the combined fiscal-monetary 

incentives and the macroprudential regulations. In the absence of any direct carbon-pricing in the 

country (OECD 2022), these measures are expected to bring some initial fruit towards the goal of 

achieving sustainable growth in the country. Some major policies that are in place, are as follow: 

Fiscal and Monetary Frameworks 

The Government of India has committed to a net-zero target of 2070 and has been implementing 

several initiatives to achieve this target. For instance, the International Solar Alliance; reducing 

emissions in railways; the LED bulb campaign; and widening the geographical coverage of BS IV, 

etc. Moreover, the GoI launched two phases of the Faster Adoption and Manufacturing of Hybrid 

and Electric Vehicles (FAME) scheme in 2015 and 2019. The FAME schemes are aimed at 

reducing the up-front purchase price of all vehicles and developing the infrastructures (such as 

charging stations) to encourage green vehicle production and sales. The Production Linked 

Incentive (PLI) scheme by the Government of India covers the production of electric vehicles. In 

2021, PLI included manufacturing of Advanced Chemistry Cell (ACC) under its coverage which 

is expected to bring down the prices of battery in the country. Recently, the Goods and Services 

Tax (GST) on electric vehicles has been reduced from 12 per cent to 5 per cent, while the tax on 

chargers/charging stations are reduced from 18 per cent to 5 per cent. Increasing thrust and policy 

supports in green vehicle segment augur well for its demand in the future, leading to increased 

scope for lending into this segment. In India, the Energy Conservation Building Code, introduced 

in 2007 targets energy efficiency of the buildings and is expected to have a major impact towards 

green building initiatives. The Green Rating for Integrated Habitat Assessment (GRIHA) is a 

national rating system developed to rate commercial, institutional and residential buildings in India 

emphasising on the environmental concerns. 

The Reserve Bank of India included the small renewable energy sector under its Priority Sector 

Lending (PSL) scheme in 2015. Under this scheme, firms in the renewable energy sector are 

eligible for loans up to INR 30 crore, while households are eligible for loans up to INR 10 lakh for 

investing in renewable energy. However, the exposure of the banking sector has so far been very 



21 
 

limited to alternative sources of energy. At the all-India level, less than 10 percent of the bank 

credit deployed in the electricity industry is for non-conventional energy production3. 

Macroprudential Policies 

Disclosure Requirements 

One of the prominent policy initiatives at the international level includes the formation of the 

Financial Stability Board’s Taskforce on Climate-related Financial Disclosures (TCFD). Building 

on the recommendations of TCFD, the International Sustainability Standards Board (ISSB) has 

already released its first set of standards, encompassing industry-based disclosure requirements 

derived from the Sustainability Accounting Standards Board (SASB) for implementation by 

countries. Currently, the TCFD encourages companies to use its recommended frameworks. 

However, implementation of these recommendations has not been made mandatory so far in most 

cases. The major strategic move in India in this respect was the implementation of sustainability 

disclosure requirements in 2012. Since 2012, the Security and Exchange Board of India (SEBI) 

has made it mandatory for the top 100 listed entities based on market capitalization at the BSE and 

NSE to publish annual business responsibility reports and has revised it from time to time. In its 

latest revision as of March 2021, titled "Business Responsibility and Sustainability Reporting by 

Listed Entities" (BRSR), the Security and Exchange Board of India (SEBI) sought disclosures on 

a listed entity’s overall management of environment, social, and governance (ESG)-related risks, 

the approach taken to mitigate those risks, and its performance on those grounds. The Ministry of 

Corporate Affairs also mandated reporting of the progress on corporate social responsibilities 

(CSR) under the Companies Act, 2013. In October 2017, the Report of the Committee on 

Corporate Governance proposed that the board of directors meet at least once a year to specifically 

discuss strategy, budgets, board evaluation, risk management, and succession planning. 

Sustainable or ESG stock indices are definitive steps in measuring risks and implementing 

macroprudential policies. The ESG stock indices were adopted across the globe as part of the 

Sustainable Stock Exchange initiative, which recommends the signatory countries recognise ESG 

leaders from time to time. Two major stock exchanges in India, the Bombay Stock Exchange 

(BSE) and the National Stock Exchange (NSE), are part of this initiative and publish separate ESG 

                                                           
3 Based on data published by Reserve Bank of India as on March 2022. 
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indices. The leading stock exchanges, financial market regulators, and ministries dealing with 

corporate affairs in China (2008), Hong Kong (2012), the UK (2012), India (2012), the Philippines 

(2013), Vietnam (2013), and Singapore (2016) were among the nations to implement the 

framework for disclosure of ESG-related risks by the listed companies in their jurisdiction (Volz, 

2018). 

Tracking of Risks 

India currently uses platforms such as PAT (perform, achieve, trade) and RPO (renewable 

purchase obligations) for tracking GHG emissions. The implementation of national MRV 

(measurement, reporting, and verification) to track both domestic and international climate finance 

is under consideration. However, there is a need for a unified statistical framework, including a 

consistent and comparable taxonomy, regular disclosures, and monitoring. India would require a 

significant amount of work in this respect. 

Way Forward 

An improved macroprudential framework would require a better assessment of the risk. In this 

respect, standardising climate-related disclosures and making them mandatory would probably be 

a major push (Krogstrup and Oman (2019)). Current prudential frameworks generally do not 

explicitly take climate-related risks into account. Climate risk can be incorporated into stress tests 

in this regard (ESRB 2016, NGFS 2019). Banco Central do Brasil already requires commercial 

banks to incorporate environmental risk factors in capital need calculations (Banco Central do 

Brasil 2011), while the Bank of England is conducting stress tests using climate scenarios (Bank 

of England 2019a, b). Additional tools such as reserve, liquidity, and capital requirements, loan-

to-value ratios, caps on credit growth, especially for "brown" industries, and sectoral capital 

buffers targeting credit to particularly climate-exposed sectors may also be considered (Galati and 

Moessner (2017), Cerutti et al. (2017). In this regard, China published the world's first national-

level green bond taxonomy in 2015 (NGFS 2019) to address the challenge of correctly pricing 

climate risks. With the aim to increase banks' demand for financing green investments and reduce 

demand for non-green investments, the EU High-Level Expert Group on Sustainable Finance 

(2018) considered introducing a "green supporting factor" and a "brown penalising factor" in 
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prudential rules. Aglietta and Espagne (2016) proposed the introduction of international 

requirements for a minimum amount of "green" assets on bank balance sheets. 

VII. Conclusion 

In this paper, we provide estimates of green total factor productivity (GTFP) growth, which is the 

growth in a country’s total factor productivity (TFP) after accounting for its environmental 

consequences, generally measured by the emission of greenhouse gases, using nationally aggregate 

data for 146 countries across the globe between 1990 and 2019. Our estimates using the Global 

Malmquist-Luenberger Productivity Index suggests that GTFP growth generally differs 

significantly from the aggregate TFP growth across the globe. In case of India, our estimates 

suggest that India’s average annual GTFP growth rate since 2000 is lowest among the major 

emerging and advanced economies in the world at almost zero per cent, while India’s conventional 

TFP growth stands out to be one of the highest globally, at above 2 percent annually. This means, 

although India witnessed an impressive rate of technological progress and productivity growth 

since the Economic Liberalization of 1991, this progress may have been more carbon-dependent 

compared to the rest of the world, especially the east-Asian and OECD countries. Our findings 

suggest that India’s technological progress may have been more carbon-dependent compared to 

the rest of the world, especially the east-Asian and OECD countries. In this vein, this paper 

discusses some possible policy aspects to appropriately cap the carbon-dependence in the 

economy. Although it is well recognised that OECD countries are far ahead of India in terms of 

economic progress and technological abilities to turn their economic activities into more 

environmentally sensitive ones, critically examining India’s environment-related policies vis-à-vis 

the OECD countries may provide sufficient scope for improving India’s position in this respect. 

Despite being low, India’s GTFP growth improved in the last decade, i.e., the 2010s. The 

improvement bodes well for India’s international commitments under successive climate deals at 

the international level and India's efforts towards achieving climate-sensitive growth trajectories. 

In recent years, we have seen convergence in GTFP growth across countries. This could be due to 

the implementation of several key initiatives on this front, including climate finance, which allows 

developing nations to access climate finance through the Green Climate Fund, the Adaptation 

Fund, and the Global Environment Facility. This exercise, therefore highlights the importance of 
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incorporating environmental degradation into the productivity estimates and macroprudential 

actions by the rapidly industrialising nations. 
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Annex 

 

Source: Author’s calculation 
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